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Why care about
convergence?



Converged?
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Converged?
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We know when it looks
converged.

Right?



Yes, and no.



Research Question

Can visualisations be used to
detect convergence?




Research Question

Can visualisations be used to detect convergence?

Are some visualisations better than others for detecting convergence?

Is confidence related to detecting convergence?

Is experience with Bayesian statistics related to detecting
convergence?
3




Experimental Method

Bad Specification Good Specification

60,000 Burn in 60,000 Burn in

10,000 Samples 10,000 Samples




Experimental Method

Slice 10,000 samples into 10 sets
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Experimental Method

Select nine bad and one good
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Experimental Method

Generate graphics
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Statistical
Inference for
exploratory data
analysis and
model diagnostic

Buja, A.et al
(2009).



Experimental Method

Generate graphics
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BAYES ON THE BEACH 2017
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Miles McBain @MilesMcBain - 14 Nov 2017
"@#&% | have to log on" The poster innovations at #bayesonbeach2017 continue

@nj_tierney
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Demo



Experience (years)

Please provide an estimate of the number of
years experience you have with Bayesian
Statistics

® 0-1years
O 1-2vyears
O 2-3years
O 3-4vyears
O 4-5vyears
© 5 plusyears




Experience (Rank)

Please evaluate your experience with
Bayesian Statistics, selecting one of the
following

@® No experience at all
O Some experience
© Moderate experience

O Very experienced
O Expert




Density

|dentify which graphic is
the most converged
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From O to 100, with O being 'no confidence at
all' and 100 being 'absolutely confident’, rank
your confidence with this decision
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ldentify which graphicis
the most converged
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From O to 100, with O being 'no confidence at
all' and 100 being 'absolutely confident’, rank
your confidence with this decision
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ldentify which graphic is
the most converged
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From O to 100, with O being 'no confidence at
all' and 100 being 'absolutely confident’, rank
your confidence with this decision
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model {

for( 1 in 1 : N ) {
yv[1] ~ dnorm(mu[i1], tau)
mu[1] <- lambda[T[1]]
T[1] ~ dcat(P[])
}

P[l:maxT] ~ ddirch(alphal[])

lambda[l] ~ dnorm(0.0, 1.0E-6)

for (J 1n 2:maxT){
lambda[j] <- lambda[j-1] + theta[]-1]
theta[j-1] ~ dnorm(0.0, 1.0E-6)I(0.0, )
}

tau ~ dgamma(0.001, 0.001)

sigma <- 1 / sqrt(tau)
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Bad Model Good Model

22 Mixtures 2 Mixtures
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Results
Descriptive statistics
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Results
Descriptive statistics

0 -1 years 2
1 -2 years 1
2 - 3 years 2
3 - 4 years 3
S plus years 8

30



Results

Can visualisations be used to detect convergence?

Proportion



Results

Are some visualisations better than others?
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Results

Is confidence related to detecting convergence?

TRUE

FALSE

0 25 50 75 100 33

confidence



Results

Is confidence related to detecting convergence?

density trace
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Results

How Is Experience Related?

Expert Moderale experience No experience al gll

TRUL
FALSE .
, 0.00 0.25 0.50 0.75
Soms experience Very experienced

TRUE . m
Some Experience 3

FALSE . Moderate Experience 6
Very Experienced 4

0.00 0.25 0.50 0.7/5 0.0o 0.25 0.50 0.75

Proportion EXp ert . 3 5



Results

How Is Experience Related?

C-1vyears 1-2vears 2 - 3 years
- . I .

- .

O0-1years 2

1 -2 years 1

FALSE

3 -4 years 5 plus years 04 28 3-4 years 3

2 - 3 years 2

5 plus years 8

FALSE

0.2 0.6

Proportlon 3 6



Results

How |Is Experience Related?

=xpert Moderate expenence No expenence at all

TRUE
FALSE
plot_type
, . - 00 01 02 03 I sutocor
Some experience Very experiencec
Some Experience 3
FALSE

Moderate 6

Very Experienced 4
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

Proportion 3 7

Expert 1



Results

How Is Experience Related?

0-1years 1-2 years
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3-4vyears 5 plus vears
TRUE
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Summary

Can visualisations be used to detect convergence?

39



Summary

Are some visualisations better than others for detecting convergence?
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Summary

Is confidence related to detecting convergence?
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Summary

|s experience with Bayesian statistics related to detecting convergence?
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10 things I hate

you




10 things | hate

you

~EXPeriments”?




#1: Shiny is not optimised for experiments

Sending/storing responses to a cloud is not trivial

Efficiently presenting many experiments and tracking responses is challenging

Do we track the time taken? Is that interesting? Is that difficult?



#2: Creating good and bad convergence?

| have definitely created bad samples accidentally

| found it hard to create bad samples AND understand the implication
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#3: More Chains

Looking at only one chain requires you to know more about the distribution
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#4: Design and simulate the data first

We only had one observation per person per plot

Designing the model and simulating collected data would have helped

It also helps you understand what you are most interested in



#5: No context diagnostics are weird

But explaining and comprehending an entire Bayesian model takes time
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#6: Are these diagnostics real?

If a diagnostic fails and no one sees it, did it even diagnose anything?

Can we design better, more obvious / usable diagnostics?
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#7:. Are we measuring the right thing?

Should people be picking the good out of the bad, or the bad out of the good?

We are actually asking people to pick the mis-specified model, is that useful?
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#8: We should do some training/testing

Explaining what convergence is

So that users can understand what is good and bad

0O



#9: Comparing diagnostics?

Can we compare a single number diagnostic to vis?

0.99, 0.98
0.97, 0.96,
1.00, 0.95,
0.93, 0.92,
0.89, 0.88




#10: Your turn
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Colophon

Colours generated from the ochRe package

github.com/ropenscilabs/ochRe

Fonts used: Helvetica, impact.


http://github.com/ropenscilabs/ochRe
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