Are we there yet? Testing the effectiveness of graphics as MCMC diagnostics

Johns Hopkins University

Wednesday 9th January, 2019

Nicholas Tierney, Monash University, Australia

Why care about convergence?

Converged?

Converged?

4

We know when it looks converged.

Right?

Yes, and no.

Research Question

Can visualisations be used to detect convergence?

Research Question

Can visualisations be used to detect convergence?

Are some visualisations better than others for detecting convergence?

Is confidence related to detecting convergence?

Slice 10,000 samples into 10 sets

Select nine bad and one good

Generate graphics

Select the one that is most converged

Statistical inference for exploratory data analysis and model diagnostic

> Buja, A.et al (2009).

Generate graphics

Select the one that is most converged

BAYES ON THE BEACH 2017

Miles McBain @MilesMcBain · 14 Nov 2017 "@#&\$ I have to log on" The poster innovations at #bayesonbeach2017 continue @nj_tierney

Experience (years)

Please provide an estimate of the number of years experience you have with Bayesian Statistics

- 0 1 years
- 1 2 years
- 2 3 years
- 3 4 years
- 4 5 years
- 5 plus years

< Previous

Next >

Experience (Rank)

Please evaluate your experience with Bayesian Statistics, selecting one of the following

- No experience at all
- Some experience
- Moderate experience
- Very experienced
- Expert

Density

Identify which graphic is the **most** converged

20

From 0 to 100, with 0 being 'no confidence at all' and 100 being 'absolutely confident', rank your confidence with this decision

< Previous Next >

Identify which graphic is the **most** converged

22

From 0 to 100, with 0 being 'no confidence at all' and 100 being 'absolutely confident', rank your confidence with this decision

< Previous Next >

Autocorrelation

Identify which graphic is the **most** converged

24

From 0 to 100, with 0 being 'no confidence at all' and 100 being 'absolutely confident', rank your confidence with this decision

< Previous Next >

```
model{
for( i in 1 : N ) {
  y[i] ~ dnorm(mu[i], tau)
  mu[i] <- lambda[T[i]]</pre>
  T[i] \sim dcat(P[])
P[1:maxT] ~ ddirch(alpha[])
lambda[1] \sim dnorm(0.0, 1.0E-6)
for (j in 2:maxT){
  lambda[j] < - lambda[j-1] + theta[j-1]
  theta[j-1] \sim dnorm(0.0, 1.0E-6)I(0.0, )
  }
tau \sim dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tau)</pre>
```

Bad Model

22 Mixtures

Good Model

2 Mixtures

The Data: "eyes"

Size	Group					
529	NA					
530	NA	0.04				
532	NA					
533	NA	sity				
534	NA	den				
534	NA	0.02 -				
534	NA					
535	NA					
535	NA	0.00 -				
			520	530	540 size	550

Descriptive statistics

N = 16

Expertise	Ν
Some Experience	3
Moderate Experience	6
Very Experienced	4
Expert	1

Descriptive statistics

N = 16

E	xpertise	Ν
0	- 1 years	2
1	- 2 years	1
2	- 3 years	2
3	- 4 years	3
5 p	plus years	8

Can visualisations be used to detect convergence?

Are some visualisations better than others?

Is confidence related to detecting convergence?

Is confidence related to detecting convergence?

How Is Experience Related?

How Is Experience Related?

How Is Experience Related?

37

How Is Experience Related?

Are some visualisations better than others for detecting convergence?

Is confidence related to detecting convergence?

Are some visualisations better than others for detecting convergence?

Is confidence related to detecting convergence?

Are some visualisations better than others for detecting convergence?

Is confidence related to detecting convergence?

Are some visualisations better than others for detecting convergence?

Is confidence related to detecting convergence?

is experience with Bayesian statistics related to u

10 things I hate

about

you

MCMC

10 things I hate

learned about

you

MCMC

...Experiments?

#1: Shiny is not optimised for experiments

Sending/storing responses to a cloud is not trivial

Efficiently presenting many experiments and tracking responses is challenging

Do we track the time taken? Is that interesting? Is that difficult?

#2: Creating good and bad convergence?

I have definitely created bad samples accidentally

I found it hard to create bad samples AND understand the implication

#3: More Chains

Looking at only one chain requires you to know more about the distribution

#4: Design and simulate the data first

We only had one observation per person per plot

Designing the model and simulating collected data would have helped

It also helps you understand what you are most interested in

#5: No context diagnostics are weird

But explaining and comprehending an entire Bayesian model takes time

#6: Are these diagnostics real?

If a diagnostic fails and no one sees it, did it even diagnose anything?

Can we design better, more obvious / usable diagnostics?

#7: Are we measuring the right thing?

Should people be picking the good out of the bad, or the bad out of the good?

We are actually asking people to pick the mis-specified model, is that useful?

#8: We should do some training/testing

Explaining what convergence is

So that users can understand what is good and bad

#9: Comparing diagnostics?

Can we compare a single number diagnostic to vis?

0.99, 0.98 0.97, 0.96, 1.00, 0.95, 0.93, 0.92, 0.89, 0.88

#10: Your turn

Acknowledgements

Dr. David Frazier for his helpful suggestions on the methodology

Dr. Sam Clifford for discussions on the model implementation, and writing the JAGS code to create the "Good" and "Bad" models.

Colophon

Colours generated from the ochRe package

github.com/ropenscilabs/ochRe

Fonts used: Helvetica, impact.

References

Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E. K., Swayne, D. F., & Wickham, H. (2009). Statistical inference for exploratory data analysis and model diagnostics. *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367*(1906), 4361-4383.x

Gelman, A., & Shirley, K. (2011). Inference from simulations and monitoring convergence. *Handbook of Markov Chain Monte Carlo*.

Loy, A., Hofmann, H., & Cook, D. (2017). Model Choice and Diagnostics for Linear Mixed-Effects Models Using Statistics on Street Corners. *Journal of Computational and Graphical Statistics*

Learn more

njtierney/dualchain

> nj_tierney

njtierney.com

icholas.tierney@gmail.com